3.4.93 \(\int \frac {1}{(3+3 \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}} \, dx\) [393]

3.4.93.1 Optimal result
3.4.93.2 Mathematica [A] (verified)
3.4.93.3 Rubi [A] (verified)
3.4.93.4 Maple [B] (verified)
3.4.93.5 Fricas [A] (verification not implemented)
3.4.93.6 Sympy [F]
3.4.93.7 Maxima [F]
3.4.93.8 Giac [A] (verification not implemented)
3.4.93.9 Mupad [F(-1)]

3.4.93.1 Optimal result

Integrand size = 30, antiderivative size = 92 \[ \int \frac {1}{(3+3 \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}} \, dx=-\frac {\cos (e+f x)}{2 f (3+3 \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}}+\frac {\text {arctanh}(\sin (e+f x)) \cos (e+f x)}{6 f \sqrt {3+3 \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \]

output
-1/2*cos(f*x+e)/f/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(1/2)+1/2*arctan 
h(sin(f*x+e))*cos(f*x+e)/a/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2)
 
3.4.93.2 Mathematica [A] (verified)

Time = 0.76 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.58 \[ \int \frac {1}{(3+3 \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}} \, dx=\frac {\cos ^2\left (\frac {1}{2} (e+f x)\right ) \left (\log \left (1-\tan \left (\frac {1}{2} (e+f x)\right )\right )-\log \left (1+\tan \left (\frac {1}{2} (e+f x)\right )\right )+\left (-1+\log \left (1-\tan \left (\frac {1}{2} (e+f x)\right )\right )-\log \left (1+\tan \left (\frac {1}{2} (e+f x)\right )\right )\right ) \sin (e+f x)\right ) \left (-1+\tan \left (\frac {1}{2} (e+f x)\right )\right ) \left (1+\tan \left (\frac {1}{2} (e+f x)\right )\right )}{6 \sqrt {3} f (1+\sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}} \]

input
Integrate[1/((3 + 3*Sin[e + f*x])^(3/2)*Sqrt[c - c*Sin[e + f*x]]),x]
 
output
(Cos[(e + f*x)/2]^2*(Log[1 - Tan[(e + f*x)/2]] - Log[1 + Tan[(e + f*x)/2]] 
 + (-1 + Log[1 - Tan[(e + f*x)/2]] - Log[1 + Tan[(e + f*x)/2]])*Sin[e + f* 
x])*(-1 + Tan[(e + f*x)/2])*(1 + Tan[(e + f*x)/2]))/(6*Sqrt[3]*f*(1 + Sin[ 
e + f*x])^(3/2)*Sqrt[c - c*Sin[e + f*x]])
 
3.4.93.3 Rubi [A] (verified)

Time = 0.50 (sec) , antiderivative size = 95, normalized size of antiderivative = 1.03, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3042, 3222, 3042, 3220, 3042, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(a \sin (e+f x)+a)^{3/2} \sqrt {c-c \sin (e+f x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{(a \sin (e+f x)+a)^{3/2} \sqrt {c-c \sin (e+f x)}}dx\)

\(\Big \downarrow \) 3222

\(\displaystyle \frac {\int \frac {1}{\sqrt {\sin (e+f x) a+a} \sqrt {c-c \sin (e+f x)}}dx}{2 a}-\frac {\cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2} \sqrt {c-c \sin (e+f x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {1}{\sqrt {\sin (e+f x) a+a} \sqrt {c-c \sin (e+f x)}}dx}{2 a}-\frac {\cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2} \sqrt {c-c \sin (e+f x)}}\)

\(\Big \downarrow \) 3220

\(\displaystyle \frac {\cos (e+f x) \int \sec (e+f x)dx}{2 a \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}-\frac {\cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2} \sqrt {c-c \sin (e+f x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\cos (e+f x) \int \csc \left (e+f x+\frac {\pi }{2}\right )dx}{2 a \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}-\frac {\cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2} \sqrt {c-c \sin (e+f x)}}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {\cos (e+f x) \text {arctanh}(\sin (e+f x))}{2 a f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}-\frac {\cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2} \sqrt {c-c \sin (e+f x)}}\)

input
Int[1/((a + a*Sin[e + f*x])^(3/2)*Sqrt[c - c*Sin[e + f*x]]),x]
 
output
-1/2*Cos[e + f*x]/(f*(a + a*Sin[e + f*x])^(3/2)*Sqrt[c - c*Sin[e + f*x]]) 
+ (ArcTanh[Sin[e + f*x]]*Cos[e + f*x])/(2*a*f*Sqrt[a + a*Sin[e + f*x]]*Sqr 
t[c - c*Sin[e + f*x]])
 

3.4.93.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3220
Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_ 
.) + (f_.)*(x_)]]), x_Symbol] :> Simp[Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x] 
]*Sqrt[c + d*Sin[e + f*x]])   Int[1/Cos[e + f*x], x], x] /; FreeQ[{a, b, c, 
 d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]
 

rule 3222
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*( 
(c + d*Sin[e + f*x])^n/(a*f*(2*m + 1))), x] + Simp[(m + n + 1)/(a*(2*m + 1) 
)   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n, x], x] /; Free 
Q[{a, b, c, d, e, f, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && 
 ILtQ[Simplify[m + n + 1], 0] && NeQ[m, -2^(-1)] && (SumSimplerQ[m, 1] || 
!SumSimplerQ[n, 1])
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
3.4.93.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(241\) vs. \(2(83)=166\).

Time = 3.04 (sec) , antiderivative size = 242, normalized size of antiderivative = 2.63

method result size
default \(\frac {\left (\cos ^{2}\left (f x +e \right )\right ) \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1\right )+\ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1\right ) \sin \left (f x +e \right ) \cos \left (f x +e \right )-\left (\cos ^{2}\left (f x +e \right )\right ) \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )-1\right )-\ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )-1\right ) \sin \left (f x +e \right ) \cos \left (f x +e \right )+\ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1\right ) \cos \left (f x +e \right )-\ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )-1\right ) \cos \left (f x +e \right )+\cos ^{2}\left (f x +e \right )+\sin \left (f x +e \right ) \cos \left (f x +e \right )+\sin \left (f x +e \right )-1}{2 f \left (1+\cos \left (f x +e \right )+\sin \left (f x +e \right )\right ) a \sqrt {a \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}}\) \(242\)

input
int(1/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(1/2),x,method=_RETURNVERBOS 
E)
 
output
1/2/f*(cos(f*x+e)^2*ln(-cot(f*x+e)+csc(f*x+e)+1)+ln(-cot(f*x+e)+csc(f*x+e) 
+1)*sin(f*x+e)*cos(f*x+e)-cos(f*x+e)^2*ln(-cot(f*x+e)+csc(f*x+e)-1)-ln(-co 
t(f*x+e)+csc(f*x+e)-1)*sin(f*x+e)*cos(f*x+e)+ln(-cot(f*x+e)+csc(f*x+e)+1)* 
cos(f*x+e)-ln(-cot(f*x+e)+csc(f*x+e)-1)*cos(f*x+e)+cos(f*x+e)^2+sin(f*x+e) 
*cos(f*x+e)+sin(f*x+e)-1)/(1+cos(f*x+e)+sin(f*x+e))/a/(a*(sin(f*x+e)+1))^( 
1/2)/(-c*(sin(f*x+e)-1))^(1/2)
 
3.4.93.5 Fricas [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 305, normalized size of antiderivative = 3.32 \[ \int \frac {1}{(3+3 \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}} \, dx=\left [\frac {\sqrt {a c} {\left (\cos \left (f x + e\right ) \sin \left (f x + e\right ) + \cos \left (f x + e\right )\right )} \log \left (-\frac {a c \cos \left (f x + e\right )^{3} - 2 \, a c \cos \left (f x + e\right ) - 2 \, \sqrt {a c} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c} \sin \left (f x + e\right )}{\cos \left (f x + e\right )^{3}}\right ) - 2 \, \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{4 \, {\left (a^{2} c f \cos \left (f x + e\right ) \sin \left (f x + e\right ) + a^{2} c f \cos \left (f x + e\right )\right )}}, -\frac {\sqrt {-a c} {\left (\cos \left (f x + e\right ) \sin \left (f x + e\right ) + \cos \left (f x + e\right )\right )} \arctan \left (\frac {\sqrt {-a c} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{a c \cos \left (f x + e\right ) \sin \left (f x + e\right )}\right ) + \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{2 \, {\left (a^{2} c f \cos \left (f x + e\right ) \sin \left (f x + e\right ) + a^{2} c f \cos \left (f x + e\right )\right )}}\right ] \]

input
integrate(1/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(1/2),x, algorithm="fr 
icas")
 
output
[1/4*(sqrt(a*c)*(cos(f*x + e)*sin(f*x + e) + cos(f*x + e))*log(-(a*c*cos(f 
*x + e)^3 - 2*a*c*cos(f*x + e) - 2*sqrt(a*c)*sqrt(a*sin(f*x + e) + a)*sqrt 
(-c*sin(f*x + e) + c)*sin(f*x + e))/cos(f*x + e)^3) - 2*sqrt(a*sin(f*x + e 
) + a)*sqrt(-c*sin(f*x + e) + c))/(a^2*c*f*cos(f*x + e)*sin(f*x + e) + a^2 
*c*f*cos(f*x + e)), -1/2*(sqrt(-a*c)*(cos(f*x + e)*sin(f*x + e) + cos(f*x 
+ e))*arctan(sqrt(-a*c)*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c) 
/(a*c*cos(f*x + e)*sin(f*x + e))) + sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f 
*x + e) + c))/(a^2*c*f*cos(f*x + e)*sin(f*x + e) + a^2*c*f*cos(f*x + e))]
 
3.4.93.6 Sympy [F]

\[ \int \frac {1}{(3+3 \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}} \, dx=\int \frac {1}{\left (a \left (\sin {\left (e + f x \right )} + 1\right )\right )^{\frac {3}{2}} \sqrt {- c \left (\sin {\left (e + f x \right )} - 1\right )}}\, dx \]

input
integrate(1/(a+a*sin(f*x+e))**(3/2)/(c-c*sin(f*x+e))**(1/2),x)
 
output
Integral(1/((a*(sin(e + f*x) + 1))**(3/2)*sqrt(-c*(sin(e + f*x) - 1))), x)
 
3.4.93.7 Maxima [F]

\[ \int \frac {1}{(3+3 \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}} \, dx=\int { \frac {1}{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}} \sqrt {-c \sin \left (f x + e\right ) + c}} \,d x } \]

input
integrate(1/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(1/2),x, algorithm="ma 
xima")
 
output
integrate(1/((a*sin(f*x + e) + a)^(3/2)*sqrt(-c*sin(f*x + e) + c)), x)
 
3.4.93.8 Giac [A] (verification not implemented)

Time = 0.73 (sec) , antiderivative size = 165, normalized size of antiderivative = 1.79 \[ \int \frac {1}{(3+3 \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}} \, dx=\frac {\frac {\log \left (-\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 1\right )}{a^{\frac {3}{2}} \sqrt {c} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} - \frac {2 \, \log \left ({\left | \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) \right |}\right )}{a^{\frac {3}{2}} \sqrt {c} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} + \frac {1}{a^{\frac {3}{2}} \sqrt {c} \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}}{4 \, f} \]

input
integrate(1/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(1/2),x, algorithm="gi 
ac")
 
output
1/4*(log(-cos(-1/4*pi + 1/2*f*x + 1/2*e)^2 + 1)/(a^(3/2)*sqrt(c)*sgn(cos(- 
1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))) - 2*log(ab 
s(cos(-1/4*pi + 1/2*f*x + 1/2*e)))/(a^(3/2)*sqrt(c)*sgn(cos(-1/4*pi + 1/2* 
f*x + 1/2*e))*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))) + 1/(a^(3/2)*sqrt(c)*co 
s(-1/4*pi + 1/2*f*x + 1/2*e)^2*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin 
(-1/4*pi + 1/2*f*x + 1/2*e))))/f
 
3.4.93.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(3+3 \sin (e+f x))^{3/2} \sqrt {c-c \sin (e+f x)}} \, dx=\int \frac {1}{{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{3/2}\,\sqrt {c-c\,\sin \left (e+f\,x\right )}} \,d x \]

input
int(1/((a + a*sin(e + f*x))^(3/2)*(c - c*sin(e + f*x))^(1/2)),x)
 
output
int(1/((a + a*sin(e + f*x))^(3/2)*(c - c*sin(e + f*x))^(1/2)), x)